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Abstract

We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical
method for simulating Coulomb collisions. The method separates and optimally minimizes the
finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau-
Fokker-Planck equation. It does so by combining multiple solutions to the underlying equations
with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost
of the method is O(ε−2) or O(ε−2(ln ε)2), depending on the underlying discretization, Milstein
or Euler-Maruyama respectively. This is to be contrasted with a cost of O(ε−3) for direct simu-
lation Monte Carlo or binary collision methods. We successfully demonstrate the method with
a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the
correlated Milstein cross terms, and generating a computational saving of a factor of 100 for
ε = 10−5. We discuss the importance of the method for problems in which collisions constitute
the computational rate limiting step, and its limitations.
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1. Introduction

In many regimes of practical importance, Coulomb collisions are an integral part of any
accurate plasma description. For highly collisional systems, they are essential for closing the
moment hierarchy of the kinetic equation and deriving microphysical expressions for the fluid
transport coefficients. For marginally collisional systems with order one Knudsen numbers, they
play an important role in the dynamics, for example in tokamak edge plasmas [1, 2], inertial
confinement fusion [3], and astrophysics [4]. For weakly collisional, or ‘collisionless’ systems,
they regulate nonlinear phase space cascades of generalized energy and entropy [5, 6], and can
be used to understand and control grid errors in numerical simulations.

This paper presents a new (for plasma physics applications) accurate and efficient multi-
(time-) level computational method for collisional kinetic problems, and is especially useful for
systems in the low Knudsen number, i.e. highly collisional, regime. The method leverages a
stochastic differential equation (SDE), or Langevin, approach to solving the kinetic equation
particle-wise. It then combines the solutions using the multilevel Monte Carlo (MLMC) scheme,
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initially developed for applications in financial mathematics [7] and now used in a wide variety
of disparate areas [8].

The MLMC method generates computational savings by separating and independently mini-
mizing the finite-timestep and finite-sampling errors inherent in any numerical SDE solver. Anal-
ogous to deterministic multigrid methods [9], the method builds a solution calculated from a
weighted sum, over different ‘levels’ l, of successively refined building-block solutions obtained
by direct methods like, for example, the Euler-Maruyama or Milstein discretizations. The so
called ‘strong convergence’ properties of these direct schemes determine the efficiency of the
MLMC scheme in terms of a global error bound ε in expectation, over all particles, of the time-
integrated solution of the underlying SDE.

The solutions returned by the MLMC method are accurate approximations of the mean, with
respect to the particle distribution function f , of any Lipschitz ‘payoff’ function P of the gener-
alized phase space coordinates. This can include the physically important macroscopic velocity
moments of f , such as the density, fluid velocity, and temperature, that are governed by the mo-
ments of the underlying kinetic equation. For example, in the case of a homogeneous, force-free,
collisional plasma, the fluid velocity is governed by the first moment equation

n
∂ui

∂t
= Ri,

where n =
∫

f d3v, ui =
∫

f vid3v and Ri =
∫

(∂ f /∂t)coll vid3v are the macroscopic density, fluid
velocity and mean collisional transfer of momentum, respectively. Here t is time, v is the particle
velocity with components vi, and (∂ f /∂t)coll is the Landau-Fokker-Planck collision operator [10].
Unlike other approaches based on solving derived fluid equations, the MLMC method does not
rely on collisional closures or ad hoc truncation schemes. The macroscopic solutions accurately
reflect the underlying microscopic dynamics because the kinetic equation is solved directly.

The advantages of the MLMC method should be considered within the broader context of
numerical collision methods for kinetic problems: particle-based, hybrid, and continuum meth-
ods [11, 12]. Each has its own merits. Particle based methods are simple, direct and converge
at a rate independent of the number of dimensions, but carry a stochastic error that depends on
the number of simulation particles as O

(
N−1/2

)
. Hybrid methods are versatile and efficient, but

only lead to efficiency gains for partially thermalized systems [13]. Continuum methods are de-
terministic, but scale poorly with increased total (velocity plus spatial) dimension and lack the
robustness of particle methods. They must also respect stability and CFL-like constraints on their
discretization - even in the absence of mean fields.

For Monte Carlo simulations (pure particle and particle-based hybrid methods), binary colli-
sions, for example the methods of Takizuke and Abe, and Nanbu, are a popular option [14, 15].
These collision methods fall into a class of quasi-Maxwellian Boltzmann equations that have
been shown to be no less accurate than O(∆t1/2) in terms of their global truncation error [16].
Related analytic and numerical studies confirm this lower bound, and these schemes have been
argued to be as fast as O(∆t) in the best case scenario [17, 18, 19]. The sampling error of the
methods, governed by the Central Limit Theorem, scales as O

(
N−1/2

)
. The Langevin-based or

SDE description presents an alternative.
Existing computational Langevin collision models have largely focused on the lowest order

‘Euler-Maruyama’ approximation to the underlying Langevin equation. Starting with Ivanov
and Shvets [20, 21] various collision models have been developed that evolve some subset of the
particle’s energy, pitch angle and azimuthal angle [22, 23, 24, 25, 26, 27, 28]. In their most basic
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forms, the ‘weak’ convergence errors associated with these schemes are, like optimal binary
methods, O(∆t). Some of the models also include advanced numerical techniques like grid-
based schemes or schemes that use the Euler-Maruyama discretization as a building block in, for
example, predictor-corrector schemes. Further extensions include self-consistent field models
[29], gyrokinetic applications [30], and laser-plasma applications [31, 32].

Beyond the Euler-Maruyama scheme, the next approximation in the hierarchy of higher or-
der schemes is the ‘Milstein’ scheme. Its basic weak convergence error is also, like the Euler-
Maruyama scheme, O(∆t), but its strong convergence properties are improved. In one dimension,
the Milstein terms are easy to implement [27, 28]. In higher dimensions, two or more, the com-
plex statistics and statistical correlations in orthogonal Milstein terms prevent a simple descrip-
tion. Because collisions are a fundamentally multi-dimensional process in velocity space, even
in reduced frameworks like gyrokinetics, this has been a major impediment for the application
of higher-order Langevin methods in plasma physics. However, recent work provides a simple,
efficient approximation to the statistically correlated component of the orthogonal Milstein terms
and a proof of concept demonstration of their use for Coulomb collisions [33].

Existing SDE collision models and, in the best case, binary collision models have the same
order of accuracy O(∆t). Both methods also have the same computational cost ∼ O(ε−3), which
comes from the product of a factor ε−1 from the timestepping cost and a factor ε−2 from the
sampling cost (a result we derive in section 3.1). This is to be contrasted with the cost of the
MLMC method, which uses discretized SDEs as building blocks.

The Euler-Maruyama MLMC scheme is O
(
(ln ε)2/ε

)
faster than both SDE and binary meth-

ods, for the same level of accuracy. The Milstein MLMC method is even faster, offering a relative
saving of O(1/ε), and is optimal amongst all discretizations [34]. This paper provides a proof
and demonstration of these results.

The layout of this paper is as follows. In section 2 we introduce the Langevin representation
of the Landau-Fokker-Planck collision operator, and its basic numerical representation. In sec-
tion 3 we review the MLMC method of Giles that uses, as its building block, the basic numerical
representation of the collision operator. In section 4 we present the results of the MLMC method
as applied to a collisional relaxation problem. In section 5 we describe some limitations of the
method and sketch some potential avenues for extending it. Finally, in section 6 we summarize
and conclude.

2. Coulomb-Langevin equations

2.1. Formulation

The starting point for most plasma collision models is the Landau-Fokker-Planck operator
[10]. This describes the effect of many small-angle collisions on the evolution of the phase-space
test-particle distributions function fa ≡ fa(t, v) of the charged plasma species a

∂ fa
∂t

=
∂ fa
∂t

∣∣∣
coll ≡ −

∂

∂vi

((
∂h
∂vi

)
fa

)
+

1
2

∂2

∂vi∂v j

(
∂2g
∂vi∂v j

fa

)
, (1)

3



where t is time, v is velocity with components vi and repeated indices are summed over. The
Rosenbluth potentials h, g [35] are given by

(∂2/∂vk∂vk)h = −4π
∑

b

Γ(1 + ma/mb) fb, (2)

(∂4/∂vk∂vm∂vk∂vm)g = −8π
∑

b

Γ fb, (3)

where Γ = 4πq2
aq2

bΛ/m2
a, the sum is over the index b of the plasma field-particle species fb, mass

is m, charge is q, and Λ is the Coulomb logarithm.
An alternative representation of the integro-differential Coulomb collision operator (1)-(3)

is a drag-diffusion SDE for the random variable v, describing the same stochastic memoryless
(Markov) process. Under the assumption of white-noise forcing, the SDE description can be
shown to be equivalent to the Fokker-Planck or forward Kolmogorov representation (Chapter
9.3, [36]).

Recasting the distribution function fa as a sum of delta-function particles, indexed by k
(henceforth repressed)

fa(t, v) =
∑

k

δ(v − vk(t)), (4)

the particle velocities are governed by Newton’s Second Law, which in the special case of (1),
corresponds to the SDE [21, 36]

dvi = Fidt + Di jdW j. (5)

Here the total force is the sum of a deterministic drag force with coefficient Fi and a stochas-
tic diffusion force with coefficient Di j and Wiener, or Brownian, process Wi(t) with a normal
probability density and variance

E
[
[Wi(t2) −Wi(t1)]2

]
= |t2 − t1|,

where E is the expectation. The Brownian motions are independent for each particle and com-
ponent of the velocity. See Table 1 for a summary of notation.

In Cartesian coordinates, and adopting an ‘Ito interpretation’ [37], Fi and Di j are related to
(1) by

Fi = (∂/∂vi)h,

Di j =
[
(∂2/∂vi∂v j)g

]1/2
,

and when fa is in equilibrium, i.e. a Maxwellian with the same temperature and flow velocity as
fb, Fi and Di j are also related to each other by the Einstein1 relations [38]:

Fi fa +
∂

∂v j

(
Di j fa

)
= 0. (6)

1In the general sense, ‘Einstein relations’ express the balance of deterministic and diffusive fluxes in a Fokker-Planck
type equation satisfied in equilibrium. The work of Einstein described the positional motion of particles suspended
in a fluid (undergoing Brownian motion), so that the discussion there was of fluxes crossing notional boundaries in
configuration space. In this paper, the relevant fluxes are across boundaries in velocity space.

4



0.0 0.2 0.4 0.6 0.8 1.0
t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

µ

0.0 0.2 0.4 0.6 0.8 1.0
t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

µ

Figure 1: Collisional evolution of velocity-space coordinate µ for a single particle using the Euler-Maruyama integration
scheme (left) and Milstein scheme (right). Results are generated from (50) and (51) using successively compounded
timesteps ∆tl = T2−l for l = 0, 1, 2 . . . 8, and the same underlying Brownian path. The rapid convergence of the Milstein
results, with increasing l, are indicative of the scheme’s improved strong convergence properties relative to the Euler-
Maruyma scheme. Pairs of paths with l, l − 1 are combined in the MLMC scheme to estimate E[µ].

In curvilinear coordinate systems or for other stochastic calculuses, e.g. the ‘Stratonovich
interpretation’, Fi and Di j can appear as mixed coefficients of the drag and diffusion terms in (5)
[37].

Without loss of generality, macroscopic forcing - electromagnetism, gravity, model terms
- can be included in this formulation. Either directly in the coefficient of the deterministic
drag term, or via an operator splitting procedure. Once it has been numerically discretized, (5)
presents a simple method for including collisions or other stochastic processes in particle-in-cell
codes. The method can also be applied to classes of stochastic kinetic systems more general than
plasmas.

2.2. Numerical discretization

In general, solutions to (5) at time T , v(T ) must be obtained numerically. Discretization can
be achieved by an iterative (stochastic)-Taylor expansion in the finite timestep ∆tl = 2−lT .

The simplest integration scheme is the Euler-Maruyama scheme, Fig. 1. It is

∆vi = Fi∆tl + Di j∆W j, (7)

where ∆vi = vi(t + ∆tl) − vi(t), ∆W j = W j(t + ∆tl) −W j(t), and under the Ito interpretation, the
coefficients Fi,Di j, and their derivatives are to be evaluated at time t. Solutions to (5) obtained
using schemes like (7) and its higher order extensions, are said to be obtained directly, or using
single level estimates, i.e. l = constant.

The weak and strong convergence properties of a direct scheme, like (7), can be defined in
terms of its weak and strong errors [37, 33]. When solving for v(T ) these are, respectively, given
by:

εW (v,T,∆t) = |E [v(T )] − E [vl(T )]| ,

εS (v,T,∆t) = E
[
|v(T ) − vl(T )|2

]1/2
,
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where vl is the solution to (5) obtained using the finite timestep ∆tl. When solving for some
Lipschitz function of v(T ), P[v(T )], the definition of the weak error (although not the strong
error) must be generalized, so that [37]:

εW (P(v),T,∆t) = |E [P(v(T ))] − E [P(vl(T ))]| , (8)

εS (P(v),T,∆t) = E
[
|v(T ) − vl(T )|2

]1/2
. (9)

For single-valued initial conditions for the random variables, the expectations are over Brownian
paths Wi only. For multi-valued initial conditions, expectations are over both initial conditions
and Brownian paths.

A scheme is said to converge weakly with O
(
∆tαl

)
if εW ≤ c∆tαl , and strongly with O(∆tβl )

if εS ≤ c∆tβl as ∆tl → 0, where the c’s are (different) constants. While strong convergence is
a straightforward generalization of deterministic numerical convergence, it is rarely of practical
importance. In general, it is the weak convergence properties of a numerical SDE scheme that
dictates its utility.

For the Euler-Maruyama scheme (7), the convergence properties are

P(v) − P(vl) =

{
εW ∼ O(T∆tl) − Weak Euler scaling,
εS ∼ O(

√
T∆tl) − Strong Euler scaling,

(10)

so α = 1 and β = 1/2, as shown in Fig. 2.
The next scheme in the hierarchy of Taylor expansions of (5) is the first order Milstein ap-

proximation, also shown in Fig. 1. It is [37, 39]

∆vi = Fi∆tl + Di j∆W j +
1
2

Dm j
∂Di j

∂vm

(
∆W2

j − ∆tl
)

+
∑
j,k

Dmk
∂Di j

∂vm
Ak j, (11)

where ∆tl arising in the third term comes from the quadratic variation of a stochastic random
variable, and Ak j is the off-diagonal ‘area integral’ cross term given by

Ak j =

∫ t+∆tl

t

[
W j(s) −W j(t)

]
dWk(s) =

∫ t+∆tl

t
dWk(s)

∫ s

t
dW j(η). (12)

The area integrals Ak j are non-Guassian random numbers that are closely related to the so-
called ‘Lévy areas’ Lk j = (A jk−Ak j)/2, and are correlated with the Brownian motions Wk and W j

[40]. Numerically, sampling Ak j in a computationally efficient manner is technically challenging
[37, 41, 42]. However, recently Dimits et al. [33] have developed a simple new approximate
method for sampling Ak j in two dimensions. The method is simple to implement, inexpensive,
accurate, and relies on the joint probability density function of the area integrals only. Using the
prescriptions outlined in [42] and [43], it is expected that this two dimensional area integral can
be used to generate the D(D − 1)/2 non-independent area integrals that arise in higher velocity-
space dimensions D.

The weak and strong convergence properties of the first-order Milstein scheme (11) are

P(v) − P(vl) =

{
εW ∼ O(T∆tl) − Weak Milstein scaling,
εS ∼ O(

√
T∆tl) − Strong Milstein scaling,

(13)

so α = 1 and β = 1, and, therefore, (11) is superior to (7) only in its strong convergence proper-
ties, Fig. 2.
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Figure 2: Weak (left) and strong (right) scaling properties of the Euler-Maruyama and Milstein schemes for the µ compo-
nent of the velocity calculated from 108 samples. While both schemes have the same order of weak convergence, O(∆tl),
their strong convergence properties differ, (10) and (13). The Milstein scheme convergence strongly as O(∆tl), relative
to the Euler-Maruyama scheme O(

√
∆tl).

In the context of plasma physics, it is weak convergence that is typically important in sim-
ulating collisions directly using schemes like (7) and (11). This is because plasmas are many
particle systems in which it is the summed distribution f , as opposed to the individual particles,
that are important. In other words, particle identity, which is incorporated into the strong error,
is unimportant in constructing and evolving the distribution function.

However, as we show in Section 3, it is the strong convergence properties of the underly-
ing scheme that determines the computational efficiency of Giles’ MLMC scheme. This is an
instance of strong convergence being relevant to plasma physics. The MLMC method is sig-
nificantly more efficient than direct methods, and especially so when used in conjunction with
an underlying scheme with higher-order strong convergence. Quantitatively, the relationship
between error, efficiency and computational cost, can be understood as follows.

2.3. Efficiency and computational cost

The expectation of the solution to (5), E[v(T )], has two sources of error in its numerical
realization. A finite-timestep error that depends on ∆tl, and a finite-sampling error that depends
on the number of samples N. The same is true of any function of the solution, for example, the
average kinetic energy K of a collection of particles:

K =
1
2

m
n

∫
f (T, v)|v|2d3v ≡

1
2

mE[|v(T )|2], (14)

where the left and right hand interpretations of v are as in (4), so f obeys (1) and v(T ) obeys (5).
Minimizing the error in the moments of f , for example (14), is a compromise between effi-

ciency and accuracy. Let P = P(v(T )) be some Lipschitz scalar function of v(T ), let Pl = P(vl(T ))
be its finite timestep approximation, and let Pk

l = P(vk
l (T )) be the k-th sample of the finite

timestep approximation. For numerical schemes that employ discretizations like (7) or (11)
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directly, we define

P̂ = E[P] with N → ∞,∆tl → 0, (15)

P̂l = E[Pl] with N → ∞,∆tl = 2−lT, (16)

P̂Nl
l = N−1

l

∑Nl

k=1
Pk

l with N = Nl,∆tl = 2−lT. (17)

to be the ‘true’, finite-timestep, and finite-timestep finite-sampling approximations respectively,
Table 1.

Equations (15)-(17) are calculated from (5) in two stages. First, applying some convergent
integration scheme with ∆tl → 0 for v, or ∆tl = 2−lT a constant for vl. Second, applying P and
calculating the expectation by generating multiple samples, and then averaging over them with
N → ∞ for P̂ or P̂l, and finite N = Nl for P̂Nl

l .
An accurate estimate P̂Nl

l of P̂ is then one for which the mean squared error (MSE)

MSE ≡E
[(

P̂ − P̂Nl
l

)2
]

=
(
P̂ − P̂l

)2
+ E

[(
P̂l − P̂Nl

l

)2
]
, (18)

is small. The final equality follows from the fact that E[P̂l − P̂Nl
l ] = P̂l − P̂Nl

l and P̂Nl
l is an

unbiased estimate of P̂l

The size of the two terms in (18) can be varied independently. The first depends on the weak
convergence rate of the scheme O(∆tαl ), and is independent of N. The second depends on the
number of samples N = Nl, and its size is independent of ∆tl. Their associated sizes are

(
P̂ − P̂l

)2
. c2

1∆t2α
l , E

[(
P̂l − P̂Nl

l

)2
]

=
Var[Pk

l ]
Nl

, (19)

where

Var[P] ≡ E[(P − E[P])2]

is the variance operator on a random variable, and c1 is a constant.
It follows that P̂Nl

l is accurate to within ε of P̂ if

ε2 ≥ MSE ∼ c2
1∆t2α

l +
Var[Pk

l ]
Nl

. (20)

The challenge in enforcing this bound is to do so as efficiently as possible.
For direct integration, the computational cost K of obtaining P̂Nl

l is the product of the number
of timesteps T/∆tl = 2l and the number of samples N = Nl. It provides a simple measure of
efficiency and is defined as

K = Nl
T
∆tl

, (21)

In practice, K measures the number of times the collision integration routine must be called in a
numerical simulation.
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Commonly used notation
v, vi Velocity vector, components
vk, vk

i k-th realization of v, vi

vl v calculated with ∆tl
v, µ, φ Spherical components of v
v̂, v̂l E[v],E[vl]
P, Pl P(v), P(vl)
P̂, P̂l E[P(v)],E[P(vl)]
Vl Var[Pl − Pl−1]

Table 1: Roman sub- and superscripts, with the exception of l,Nl, L,NL, are vector components and random variable
realizations respectively.

To make the scheme as efficient as possible, we wish to minimize K subject to (20). To do
so, we will ensure both terms in (18) are individually bounded, so their sum ≤ ε2. Applying the
method of Lagrange multipliers in case of equality in (20) yields expressions for the optimal ∆tl
and Nl:

∆tl ' ε1/α [c2
1 (2α + 1)]−1/2α,

Nl ' ε
−2

(
1 +

1
2α

)
Var[Pk

l ],

Direct substitution into (21) then reveals the optimal computational cost is

Kopt '
c2

ε(2+1/α)

1
2α

(
1 +

1
2α

)1+1/2α

Var[Pk
l ], (22)

where c2 is a constant.
It is important to note that for both the Euler-Maruyama and the first order Milstein schemes,

(7) and (11), α = 1. It follows that Kopt ∼ O(ε−3). It is only by including higher order terms that
the weak error scaling, and therefore the optimal computational cost, can be improved.

While the direct approach has the advantage of being conceptually simple, it is asymptotically
inefficient. Minimizing the error using direct methods requires both a large sample size and a
small step size, which tends to over-resolve the problem. It is this inefficiency that is improved
upon by the MLMC method.

3. Multilevel Monte Carlo method

3.1. Background
The computational cost of direct methods scales with their timestep resolution and expec-

tation sample size. The improved efficiency of the MLMC method, relative to the methods in
Section 2.2, comes from judiciously expending computational resources only when necessary.
As initially described by Giles [7], and reviewed in this section, the improved efficiency of the
method is achieved by building an estimate of P̂ from multiple solutions with varying timesteps
∆tl = 2−lT , i.e. values of l, and expectations with varying sample sizes Nl. For the coarsest level
l = 0, the Langevin equation is integrated with a single timestep, while for the finest level l = L,
2L timesteps are required.
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The basic mechanism behind the method’s improved efficiency can be understood as fol-
lows. For small values of l, estimates are inexpensive to compute accurately, because only a few
timesteps are required for each realization of the numerical solution. In turn, for large values of
l, where each integration is relatively expensive, only a few realizations are needed because the
finite-sampling error converges to zero as the strong error, assuming β is positive.

From the linearity of the expectation operator, we have the following identity

P̂L ≡ E[PL] = E[P0] +

L∑
l=1

E[Pl − Pl−1],

≡ P̂0 +

L∑
l=1

δP̂l (23)

where P̂0 = E[P(v0)] is estimated using a single timestep and δP̂l ≡ E[Pl − Pl−1]. Equation (23)
describes a telescoping sum, where the contribution of each term decreases with increasing l, as
shown in Fig. 3.

The finite sampling analogue of (23) can be obtained by generating N0,Nl samples of P̂0, δP̂l

and combining them so

P̂NL
L = P̂N0

0 +

L∑
l=1

δP̂Nl
l (24)

where

PN0
0 =

1
N0

N0∑
k=1

Pk
0, (25)

δP̂Nl
l =

1
Nl

Nl∑
k=1

(Pk
l − Pk

l−1), (26)

are unbiased estimates of P̂0, δP̂l respectively.
In calculating each pair Pk

l and Pk
l−1 that contributes to the sum in δP̂Nl

l , it is essential that the
payoffs are constructed from the same underlying stochastic path and initial conditions. That is,
for each contributing realization to δP̂Nl

l , Pk
l−1 must be constructed by suitably coarsening Pk

l , or
conversely, Pk

l must be calculated by suitably refining Pk
l−1. One coarsening method, including a

prescription for the multi-dimensional Lévy areas, is provided in section 4.3 of Dimits et al. [33].
Paths and initial conditions for different realizations that contribute to δP̂Nl

l , and indeed different
δP̂Nl

l ’s and P̂N0
0 , can be calculated independently.

Equation (24) returns a good estimate of P̂, P̂NL
L , if, for a reasonable computational cost, the

total error is small. Like the direct methods of Section 2.3, the finite-timestep contribution to the
total error is governed by the weak convergence properties of the underlying scheme. However,
unlike direct methods and crucially for the MLMC method, the finite-sampling, or variance,
contribution

Var[P̂NL
L ] = Var[P̂N0

0 ] +

L∑
l=1

Var[δP̂Nl
l ],

10
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Figure 3: Mean (left) and variance (right) of the difference between levels for the Euler and Milstein schemes. The mean
of the difference at level l appears explicitly in (24). The variance in differences at l is significantly less than that of a
single level, which allows term in P̂NL

L to be calculated efficiently using MLMC methods. Data is taken from the beam
diffusion test case in Section 4 with payoff P = µ, (delta-function) initial conditions v∗ = 0.5, µ∗ = 0.8, and final time
T = 0.02. All quantities calculated in this figure are taken using 105 samples.

is determined by the strong convergence properties of the underlying scheme.
As in (18), the mean square error is given by

MSE =
(
P̂ − P̂L

)2
+ E

[(
P̂L − P̂NL

L

)2
]
, (27)

which we wish to bound so that ε2 ≥ MSE. Analogous to (19), the two terms are of size

(
P̂ − P̂L

)2
. c2

1∆t2α
l , E

[(
P̂L − P̂NL

L

)2
]

=
V0

N0
+

L∑
l=1

Vl

Nl
, (28)

where Vl ≡ Var[Pk
l − Pk

l−1] and V0 = Var[Vk
0] are the variances of a single sample. The variances

of these samples are related to those of the random variable δP̂Nl
l by Var[δP̂Nl

l ] ' Vl/Nl and
Var[P̂N0

0 ] ' V0/N0. For l > 0, Vl follows the strong convergence order of the underlying scheme
(9):

Vl . c3∆t2β
l . (29)

where c3 is a constant. We demonstrate this result numerically in Fig. 3, and note that (29)
dictates that the finite-sampling error in δP̂Nl

l can be bounded using fewer and fewer samples Nl,
as l increases (∆tl decreases).

From (27) and (28), it follows that P̂NL
L is a good estimate of P̂ if

ε2 ≥ MSE ∼ c2
1∆t2α

l +
V0

N0
+

L∑
l=1

Vl

Nl
, (30)

which has an associated computational cost of

K =

L∑
l=0

Kl ≡

L∑
l=0

Nl
T
∆tl

. (31)
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Figure 4: Samples Nl at each level l for the MLMC scheme with Euler (left) and Milstein (right) discretizations, (34).
The scaling for levels l ≥ 1 is determined by the strong convergence properties of the underlying scheme, Nl ∼ 2−lβ. The
computational cost at each level Kl = Nl2l is approximately constant for the Euler method, but decreases rapidly in the
telescoping Milstein sum. Parameters are the same as those used in Fig. 3.

The most efficient method for calculating P̂NL
L is, again, the one that minimizes K subject to (30).

Unlike direct methods, there are now two new degrees of freedom over which to optimize: the
total number of levels L, and the number of samples used for the expectation at each level Nl. As
in the previous section, the minimal K will clearly occur when MSE = ε2 and so we approach
the problem by separately bounding the two terms in (27) as follows:(

P̂ − P̂L

)2
=

1
2
ε2, E

[(
P̂L − P̂NL

L

)2
]

=
1
2
ε2. (32)

The first condition, along with (30) gives

L =
1
α

ln
[
c1Tα

√
2ε−1

]
ln 2

. (33)

Considering this L fixed, a Lagrange multiplier argument reveals the optimal efficiency is ob-
tained when Nl ∼

√
VlT2−l. Using this and the second condition in (32), the optimal number of

samples at level l is given by

Nl =

√
Vl2−(l+2)

ε2

L∑
l=0

√
Vl2l, (34)

where (29) ensures that Nl is a strictly decreasing function of l as shown in Fig. 4.
Now, combining (29), (31), (33) and (34), the optimal computational cost of the MLMC

scheme is given by

Kopt '
2c4T (2β−1)/2

ε2

 L∑
l=0

2−l (2β−1)/2

2

, (35)

where L = L(ε) is given by (33). In the case of β = 1/2, the sum in (35) scales as L ∼ ln ε,
whereas for β > 1/2, the sum can be uniformly bounded. From this, the asymptotic cost of
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the MLMC method is O(ε−2(ln ε)2) for the Euler-Maruyama method and O(ε−2) for the Milstein
method.

These costs are to be contrasted with the total cost of direct and binary methods, for which
K is given by (21). As described in Section 2.3, the computational cost of these methods can be
easily calculated by writing the requisite (so that the MSE ≤ ε2) timestep ∆tl and sample size
N in terms of ε and substituting directly into (21). For direct methods, the result of doing so is
given by (22) so K ∼ O

(
ε−(2+1/α)

)
for a general weak order-α scheme, and K ∼ O(ε−3) for the

widely used α = 1 direct Euler-Maruyama integration scheme. For binary methods, the analysis
is identical2. The finite-timestep error is, at best, O(∆tl) and the finite-sampling error is O(N−1/2),
so the requisite scalings of these two terms are ∆tl ∼ O(ε) and N ∼ O(ε−2) respectively. It follows
that for the binary method, at best, K ∼ O(ε−3) and, at worst, when the finite-timestep error is
O(∆t1/2

l ), the cost is K ∼ O(ε−4).
The relative theoretically optimal costs of the various methods are therefore:

Kopt =



O
(
ε−3

)
− Binary collisions,

O
(
ε−(2+1/α)

)
− General order-α direct SDE,

O
(
ε−2(ln ε)2

)
− MLMC with β = 1/2,

O
(
ε−2

)
− MLMC with β > 1/2.

(36)

In Fig. 5 we consider the specific test case of the collisional relaxation of a monoenergetic,
low-density beam, as described in Section 4. The figure confirms that the cost scaling in (36) are
accurate for the α = 1 direct Euler method, and the Euler and Milstein multilevel schemes. It
also shows that the computational cost of the MLMC method is substantially less than that of the
direct method.

3.2. Numerical Implementation

Equations (24)-(26), (33) and (34) provide a prescription for approximating P̂ by P̂NL
L , such

that its MSE ≤ ε2. There are two degrees of freedom in the MLMC scheme, L and Nl, each
influencing an associated finite-timestep and finite-sampling error. The constants that determine
L and Nl, such that (32) is enforced, are c1 and VL respectively.

In the asymptotic limit of small timestep (large l), c1 is the constant of proportionality be-
tween P̂ − P̂l and ∆tl, as defined in the weak error (8). It can be calculated using Richardson
extrapolation

|c1| ' |c1|(N) ≡
|P̂N

l − P̂N
l−1|

Tα2−lα|1 − 2α|
, (37)

where PN
l , P

N
l−1 are determined empirically by direct integration with the relevant discretization

(Euler-Muruyama, first-order Milstein) and the integer N � 1 is large enough that the sampling

2Note that binary collision algorithms pair particles into N/2 sets when performing collisions. This offers a relative
saving of up to a factor of a half, compared to Langevin treatments [44], although the constant factor does not affect the
scaling properties of the algorithm.
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error in P̂N
l is small relative to the timestep error i.e. P̂N

l ' P̂l. This semi-equality can be checked,
ex post facto, by ensuring that

1 �
|c1|(nN) − |c1|(N)

|c1|(nN)
,

for n > 1, also an integer.
As for c1, VL, which influences the finite sampling error in the MLMC scheme, must be

determined empirically. It can be estimated by taking N samples of PL − PL−1, and setting

VL ' VN
L ≡

1
N

N∑
k=1

(
Pk

L − Pk
L−1

)2
−

1
N2

 N∑
k=1

(
Pk

L − Pk
L−1

)2

, (38)

where each value of P in the pair is generated from the same Brownian path and initial condition
using the relevant discretization, and N should be large enough to ensure good statistics. It is
important to note that, unlike (37), this quantity depends on the strong convergence properties
of the underlying integration scheme (9). In this case, PL and PL−1 must be calculated using
different timesteps, but the same underlying stochastic path in which the path at the coarser level
L − 1 is suitably compounded from those used at the finer level L. Using VL, the number of
samples at each level Nl can then be computed according to (34) and by noting Vl = VL22β(L−l).

The l = 0 level is an exception and, analogous to (38), it is given by

V0 ' VN
0 ≡

1
N

N∑
j=1

(
Pk

0

)2
−

1
N2

 N∑
k=1

Pk
0

2

, (39)

where, again, N should be sufficiently large.
Careful calculation of the constants in this section is essential to obtaining an accurate es-

timate of P̂NL
L using the MLMC method3. (Although it should be noted that even for direct

methods, c1 must still be calculated to ensure MSE ≤ ε2.) The method can be implemented, step
by step, as follows, where special note should be taken at step 6 where it is essential that each
pair of realization be calculated consistently from the same underlying path. A prescription for
doing so is provided in [33].

The steps are:

1. Choose a payoff function P, end time T , and an acceptable error bound ε.
2. Choose a method of direct integration for the MLMC method.
3. Use (37) to calculate c1, and combine with (33) to get L.
4. Use L, (38) and (39) to calculate VL and V0.
5. Use VL, V0 and (34) to calculate Nl and N0.
6. Calculate Nl pairs of Pk

l , P
k
l−1, each with the same underlying stochastic path.

7. Use Nl pairs of Pk
l , P

k
l−1 to calculate δP̂Nl

l for each l = 1 to L.
8. Use N0 to calculate PN0

0 .
9. Use PN0

0 and δP̂Nl
l from l = 1 to L to calculate P̂NL

L according to (24).

These steps are implemented in Section 4 for a test case describing the collisional diffusion
of a beam of a particles interacting with a Maxwellian background.

3An alternative approach to bounding the bias error is based on increasing L until the condition |δP̂NL
L | < ε/

√
2 is met

[7]. In the case of a sign change between successive δP̂NL
L , modifications are required.
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4. Beam Diffusion Test Case

The average pitch-angle evolution of a spatially homogeneous, gyrotropic beam of particles
a constitutes a simple and robust test case for the MLMC method. The beam is injected into a
Maxwellian background distribution of particles b with equal mass, ma = mb. In the absence of
forcing, the action of collisions isotropizes fa in this classical relaxation problem.

Working in spherical velocity-space coordinates (v, θ, φ), v is the particle speed, θ = cos−1 µ
is the pitch angle with respect to some preferred direction µ, and φ is the azimuthal angle. Ne-
glecting φ-dependence (i.e. a two-dimensional collision model), the collision operator (1) is
[35]:

∂ fa
∂t

∣∣∣
coll=−

1
v2

∂

∂v

[(
v2 ∂h
∂v

+
∂g
∂v

)
fa

]
+

1
2v2

∂2

∂v2

(
v2 ∂

2g
∂v2 fa

)
+

1
2v2

∂g
∂v

∂

∂µ

[
(1 − µ2)

∂ fa
∂µ

]
, (40)

and the (initial) particle distributions are

fa = naδ(v∗ − v), (41)

fb =
nb(

πv2
th,b

)3/2 exp[−v2/v2
th,b], (42)

where v∗ is some single valued initial velocity for the test particles and the Maxwellian field
particle thermal velocity is v2

th,b = 2τ/mb = (2/3nb)
∫

fb|w|2d3v where τ is the temperature of fb
and w = v− u is the random, i.e. particle minus flow, velocity. We set nb � na throughout so we
can neglect the back reaction of the beam on the Maxwellian.

In the case that fb is Maxwellian, Trubnikov [45] gives g, h concisely by:

g(v) =
1
2

Γnb
√

2vth,b

[
Φ

(
2x +

1
x

)
+ Φ′

]
, (43)

h(v) = 2Γnb
Φ

v
, (44)

where x = v/vth,b, and Φ(x) is the standard error function.
The set of Langevin equations (5) corresponding to (40)-(44) are then given by

dv(t) = F(v)dt +
√

Dv(v)dWv(t), (45)

dµ(t) = −2Da(v)µdt +

√
2Da(v)(1 − µ2)dWµ(t), (46)

where Dv,Da are the speed and angular diffusion coefficients, and we have normalized fa by
2πv2 as required to bring the derivative to the outside in (40), so in (45) and (46), v(t)→ 2πv3(t)
and µ(t) → 2πµ(t)v2(t) in un-normalized coordinates. In what follows we work in normalized
coordinates.

The curvilinear coordinate system requires the coefficients of the deterministic and stochastic
terms to be a mixture of F,Da,Dv, and these are given by [33]

F(v) = −
AD

2v2 [(4x + 1)G(x) − Φ(x)] , (47)

Dv(v) =
AD

2v
G(x), (48)

Da(v) =
AD

4v3 (Φ(x) −G(x)) , (49)
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Figure 5: Computational cost K (left) and normalized K (right) versus user-prescribed error bound ε for the beam
diffusion test case in Section 4. The parameters are as in Fig. 3. Both the Euler and Milstein MLMC schemes are more
efficient than direct integration, Milstein by a factor of approximately 100 for the case ε = 10−5, and the scaling costs
predicted by (36) are recovered.

where AD = 2nbΓ = 8πnbq2
aq2

bΛ/m2
a, and G(x) = (Φ − xΦ′)/2x2 is the Chandrasekhar function.

The finite-timestep discretized Langevin equations can then be obtained from (45) and (46)
by an iterative stochastic Taylor expansion in ∆tl. To lowest order, retaining terms up to order
O(∆t1/2

l ), we obtain the Euler-Maruyama scheme, and to next order, retaining terms up to O(∆tl),
we obtain the Milstein scheme. Normalizing time t by the thermal field-particle collision rate
νb =

√
2AD/v3

th,b and velocity v by
√

2vth,b, the dimensionless discretized Langevin equations are

∆v = F∆tl +
√

2Dv∆Wv + κMD′v
1
2

(
∆W2

v − ∆tl
)
, (50)

∆µ = −2Daµ∆tl +

√
2Da(1 − µ2)∆Wµ+

κM

−2Daµ
1
2

(
∆W2

µ − ∆tl
)

+

√
Dv

Da

√
1 − µ2D′aAvµ

 , (51)

where κM = 0, 1 for Euler and Milstein respectively and Avµ is the v–µ correlated random vari-
able (12) whose approximate characteristic function (the Fourier transform of its probability
density function) is given in [33]. The coefficient functions are to be evaluated at the start of
each timestep, as required by the Ito stochastic calculus, and the normalized drag and diffusion
coefficients become

F(v) = 2v(Da(v) − Dv(v)), (52)

Dv(v) =
1
v

G
(

v
√

2

)
, (53)

Da(v) =
1

2v3

[
Φ

(
v
√

2

)
−G

(
v
√

2

)]
. (54)

In equilibrium, where fa and fb have the same flow velocity
∫

favd3v/na =
∫

fbvd3v/nb and
temperature, (ma/3na)

∫
faTrace(ww)d3v = τ, the drag and diffusion coefficients are related by
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Figure 6: Wall clock time to execute steps 1-9 of Section 3.2 versus user prescribed error bound ε for the same parameters
as in Fig. 3. The numerical code is written in Python and Fortran 90, and executed on a 2.4 GHz Intel Core i5 MacBook.
The MLMC methods are significantly faster than the direct methods for high accuracy simulations. For small values of
ε = 10−5, the Milstein method is approximately 40 times faster than the direct alternative.

the spherical coordinate form of the Einstein relations (6). That is, (52)-(54) must obey

2Da(v)µ −
∂

∂µ

[
Da(v)(1 − µ2)

]
= 0, (55)

F(v) −
1
v
∂

∂v

(
v2Dv(v)

)
+ vDv(v) = 0, (56)

which can be readily confirmed by direct substitution4.
To ensure the coefficients of the discretized Langevin equation are Lipschitz continuous, as

required for the MLMC method, (50)-(54) must be numerically regularized upon implementa-
tion. The procedure for doing so is described in Appendix Appendix A.

Equations (50)-(54) constitute the building blocks for a MLMC scheme that returns the mean
or moment of some payoff P of v associated with fa as it interacts with fb. The building blocks
are independent of P, the time at which its mean is evaluated T , and the acceptable error bound
ε. These quantities are parameters of the simulation. Collectively they determine the precondi-
tioning parameters of the method, c1,VL and V0.

We choose our payoff function

P = µ,

so that the MLMC scheme approximates its mean value over all particles

P̂(T ) ' P̂NL
L (T ) '

1
na

∫
µ fa(T )d3v. (57)

The results of numerical implementation are shown in Figs. 5, 6 and 7 where the method
successfully approximates the right hand side of (57), the ‘true’ value of which is itself approx-
imated using a high-resolution many particle direct simulation Monte-Carlo scheme (the direct

4In addition to the Einstein relations, Da and Dv satisfy Dv = d/dv(v3Da) which, fundamentally, is a consequence
of the fact that Coulomb interactions are through a central force and the Landau-Fokker-Planck treatment keeps only
small-angle scattering interactions.
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Euler scheme with 2 · 109 particles and 28 timesteps.). For the most accurate case ε = 10−5,
both MLMC methods are considerably faster than the direct method for which the parameters
(timestep, sample size) are chosen such that the MSE ≤ ε2. The Milstein MLMC method is
approximately 100 times faster than the direct method in terms of its computational cost, Fig.
5, and 40 times faster in terms of its wall clock timing, i.e. the number of seconds required to
complete the computation on a computer, Fig. 6.

The difference between the computational cost and wall clock timing arises, in part, because
the MLMC method actually performs two integrations at each level l, a coarse and a fine inte-
gration. This leads to an additional cost of 3/2 not captured by (31). Furthermore, the MLMC
Milstein method contains additional terms that include the Lévy areas. These must be calculated
at an additional cost relative to the direct and Euler MLMC methods.

The MLMC scheme accurately (to within ε) describes the average pitch angle relaxation of a
beam of particles interacting with an isotropic Maxwellian background. The scaling predictions
given by (36) are reproduced, so that the computational cost (total number of operations) of the
Milstein, Euler and direct methods scale as ε−2, (ln ε)2ε−2, and ε−3 respectively. Integral to the
Milstein MLMC method for P = µ is an accurate description of Avµ, (51). For other payoffs in
two dimensions that are independent of µ, cross-terms like Avµ are not required. For example,

P =
1
2

mav2

approximates the mean kinetic energy per particle K

P̂(T ) ' P̂NL
L (T ) '

1
2

ma

na

∫
fa(T, v)|v|2d3v,

where the underlying Milstein scheme includes additional terms proportional to ∆W2
v and ∆tl

only.

5. Discussion

The MLMC method constitutes a powerful new technique for solving kinetic expectation
problems, the solutions to which can be used to reconstruct the underlying distribution function.
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Asymptotically, it has significantly improved scaling properties compared to both direct SDE
and binary collision methods. However, the method is limited in several respects.

Firstly, for any given problem, the multiplicative constant associated with the scaling of the
computational cost may make the method prohibitively expensive. Secondly, it is unclear how,
for t < T , mean field quantities like electromagnetic fields and evolving back-reacted drag and
diffusion coefficients that dictate particle trajectories, are to be computed. Thirdly, for strongly
non-equilibrium problems, a large number of moments or binning operations may be needed to
accurately reconstruct f . This could be expensive.

In this section we discuss techniques and extensions to the MLMC method that can be used
to address these problems.

5.1. Improved efficiency

For expediency, our description of the MLMC method presented in Section 3 was basic and
concise. However, several improvements, not described earlier, exist.

Throughout, we have set the refinement factor between levels M = ∆tl/∆tl+1 = 2. Giles [7]
has argued that while this choice is optimal for multilevel elliptic PDE solvers, for the MLMC
method, other values may improve efficiency - specifically, a factor two saving may be obtained
by setting M = 7 in the MLMC Euler scheme. Less extreme values, M = 3, 4 etc, also lead to
improvements. Similarly, multiplicative constants other than a half for the finite timestep and
finite sampling bounds, ε2/2, in (32) may also lead to improvements.

Adaptive algorithms, and quasi-Monte Carlo sampling can also increase the efficiency of the
method [46, 47, 48]. In particular, for the Milstein method, the rapid diminishing of the finite-
sampling error with decreasing ∆tl means that the vast majority of the computational effort is
expended at the coarsest l = 0 level - Figure 4. Quasi-Monte Carlo methods are well suited to
reducing this cost. Moreover, when the function P is sufficiently smooth (twice differentiable) -
as would be expected in many plasma physics applications - the cost of simulating the coarsest
level may be completely eliminated using the recently developed Ito linearization technique [49].

For existing code bases that implement the direct Euler scheme, it is possible to obtain the
optimal ε−2 scaling of the MLMC scheme without simulating the Lévy areas. Using antithetic
techniques, the sum in (35) can be bound, even though the underlying integrator has β = 1/2
[39]. Generalizations of the antithetic method exist [49, 50].

Finally, because sampled paths are independent, like direct simulation Monte Carlo, the
method can be readily parallelized. Indeed, the timescale over which the sampled paths of (5) can
be integrated independently is only limited by the requirement that the mean fields are updated.

5.2. Mean fields

When the macroscopic dynamics of a system and its collisions occur on the same timescale,
direct simulation Monte Carlo and particle-in-cell codes must perform two operations at each
numerical timestep [29]. The first, is to advance the particles’ positions x and velocities v ac-
cording to the discretized equations of motion, including the mean force fields and collisions. In
Langevin form, including spatial dependence and electromagnetic forces, the equation of motion
(5) generalizes to [51]:

dxi = vidt (58)

dvi =

{ e
m

[
Ei + c−1εi jkv jBk

]
+ Fi

}
dt + Di jdW j, (59)
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where c is the speed of light, εi jk is the Levi-Civita symbol, and Ei, Bi are the mean electric and
magnetic fields. To ensure particle trajectories are calculated accurately over an extended period,
a second operation must then be performed - the mean fields must be updated based on the new
particle positions and velocities.

The mean electromagnetic fields, Ei, Bi are functions of t, x only. They can be calculated
from Maxwell’s equations, a set of coupled first order linear PDEs, in terms of the sum over
species of the macroscopic charge density ρ = en and current Ji = enui at each point in space.

In the Langevin framework, the macroscopic quantities can be accurately calculated on a
timescale T using the MLMC scheme and an appropriate choice of payoff. For ρ, the payoff is

P = enΘ(x′), (60)

where

Θ =

 1, x′ < x < x′ + δx,
0, x′ > x > x′ + δx,

(61)

is a binning function5 for the real-space grid cell at position x′ and of size δx, and n is the initial
macroscopic density, as in (41). It follows that ρ(T, x′) is given by

P̂(T ) ' P̂NL
L (T ) ' e

∫
f (T, x′, v′)d3v′ (62)

and similarly for Ji with the payoff P = enΘ(x′)vi.
Along with Maxwell’s equations and the equations for F,D in section 2.1, (58)-(62) provides

a complete, efficient plasma description using MLMC methods. The description is, however,
only efficient and accurate when it is acceptable to resolve the coefficients of (59), including
F and D, self-consistently, on a slow timescale T . That is, if the inherent timescale on which
the macroscopic mean fields evolve is � T , the MLMC method will fail to capture important
dynamics that take place on this faster timescale. In its present form, the method is therefore
restricted to the small Knudsen number regime where the collisional dynamics occur on a faster
timescale than the macroscopic dynamics6. Within this framework, the MLMC method could
itself constitute a building block for a multiscale simulation in which the collisions and macro-
scopic dynamics are resolved on timescales of O(∆tl) and O(T ) respectively.

It remains an open challenge to extend the MLMC method to kinetic problems in which
there is no clear scale separation between the collisional and macroscopic dynamics i.e. Knudsen
numbers of order one and greater. However, if this challenge could be met, it would constitute a
potential game changer for kinetic plasma simulations in general.

5.3. Distribution functions
Thermalized distributions vary smoothly on a velocity-space scale vth and can be uniquely

determined from their first three moments. For non-equilibrium distributions, this is not the case.
Two simple methods for reconstructing non-thermal f (T ) using the MLMC method exist.

5Formally, the MLMC method requires P to be Lipschitz, and so simple step functions are inappropriate. Modifi-
cations to Θ to ensure Lipschitz continuity may be necessary, but, nevertheless, improved efficiency relative to direct
methods has been shown for a variety of non-Lipschitz payoffs [52].

6The method can also be applied when the Lorentz force is absent or externally imposed, and nt � n f or the collisions
are between electrons and ion. In this case, the back reaction of the test particles can also be neglected.
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The first is by summing the moment hierarchy, where each moment is calculated using the
MLMC method with an appropriate choice of payoff P. For a complete set of moments, the
structure of f can be captured identically (Chapter 7, [53]). For a finite-subset, as is practically
achievable, an accurate approximation can still be obtained [54].

The second method for determining f is through a generalized version of (60) that bins parti-
cles in both real and velocity space7. In this case P = nΘ(x′, v′) and Θ is a simple generalization
of (61) to include velocity space cells v′ of size δv. It follows that P̂(T ) ' P̂NL

L (T ) ' f (T, x′, v′)
returns the particle density in a phase space cell x′, v′ at time T .

Returning multiple outputs from a single run is useful for both the methods above [8]. Sta-
tistical errors withstanding, the same set of paths is needed to compute both successive moments
and the binned phase-space distribution. So, by storing and re-using paths, the computational
cost of calculating multiple moments is only approximately as much as the most expensive mo-
ment. The same is true for phase-space binning.

So far our discussion has focused on calculating distributions at time T . While extending the
method to multi-valued initial conditions, unlike those in Section 4, is not technically difficult, a
number a comments are in order.

First, chaotic particle trajectories, real (e.g. tokamak wall) and velocity space (e.g. magnetic
mirror) boundaries are ubiquitous in plasma physics. Particles with nearby initial conditions,
sampled from the same spatial cell, may drastically diverge in phase space. The consequences of
this for the MLMC method are unknown.

Second, multi-valued initial conditions introduce a second source of statistical error, beyond
that attributable to Brownian motion. When the variance in the initial data is much less than that
associated with the random walk Var[v(0)] � Var[v(T )], the computational cost of the simulation
is unchanged. However, when the converse is true, the cost may increase dramatically. The ratio
of the two terms is approximately

Var[v(T )
Var[v(0)]

∼
Te4

m2
a

nbv2
th,b

nav2
th,a

,

where we have assumed that the initial conditions for v(T ) in the numerator are single-valued,
i.e. given by (41), and that T � the macroscopic timescale.

6. Conclusion

For the first time, we have shown how the multilevel Monte Carlo integration scheme can be
used to simulate Coulomb collisions in a plasma. Asymptotically, the method is up to ε−1 times
faster than standard direct simulation Monte Carlo or binary collision methods, when used with
an underlying Milstein discretization. This is illustrated in Fig. 5 where the total computational
cost (operations count) for the direct SDE and the Euler and Milstein multilevel schemes are
shown to scale as predicted. We have also demonstrated that the multilevel schemes are signifi-
cantly faster than direct SDE methods in terms of both computational cost, Fig. 5, and wall clock
time, Fig. 6. Our numerical results are for a classic beam diffusion test case in 2D and over a
given range of prescribed errors

7This method is qualitatively similar to an inverse semi-Lagrangian process [55], and comes at an informational cost
equivalent to that incurred in a resampling procedure.
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The most important extension to this work would be an expansion of the method to arbitrary
Knudsen number problems, where a separation of collisional and macroscopic timescales does
not exist. Other valuable studies would also include a demonstration of the method in forced,
spatially inhomogenous and multi-physics problems, and an extension to kinetic collisions mod-
els other than the Coulomb case, for example neutral particle collisions.
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Appendix A. Numerical Regularization

A number of numerical and modeling poles must be circumnavigated to implement the
MLMC method successfully.

Diffusion to negative speeds
The Langevin equation governing the evolution of v is (50). Finite changes in ∆v arising from

terms containing ∆Wv can be of any size, although large values are (exponentially) unlikely. It
follows that v(t + ∆tl) = v(t) + ∆v can be such that v(t + ∆tl) ≤ 0. This is not only unphysical, but
also numerically problematic as F,Da become singular at a rate v−1, v−2 respectively as v → 0+.
Furthermore, the deterministic drag coefficient F is anti-symmetric in v, so if v < 0 the first term
in (50) drives v to yet more negative values.

Our approach is to regularize the coefficient of the deterministic drag term F in (50), and the
stochastic diffusion term Da in (51). Our method differs from that of Lemons et al. [27] who did
not account for the small, but finite, probability case that particles diffuse to v < 0, even when the
coefficients of the diffusion terms are set to zero for small v. We define the piecewise Lipschitz
continuous functions

F (v) =


F(v), v > vc

F′(vc)
2vc

(v2 − v2
c) + F(vc), v ≤ vc

, (A.1)

and

Da(v) =


Da(v), v > vc

D′a(vc)
2vc

(v2 − v2
c) + Da(vc), v ≤ vc

, (A.2)

where vc is the critical value of v at which regularization occurs, and F′,D′a = dDa/dv, dF/dv.
Direct substitution of (A.1) into (50) yields a regularized equation for ∆v:

∆v = F∆tl +
√

2Dv∆Wv + κMD′v
1
2

(
∆W2

v − ∆tl
)
. (A.3)

An analogous modification of (51) also follows, but further regularization of the imaginary diffu-
sion coefficients is first required. We note that in the small region v < vc, the Einstein relation (56)
is not obeyed. In the simulations conducted here we set vc = 0.05, which we find, empirically, to
work.

Imaginary coefficients
The Langevin equation governing the evolution of µ is (51). Analogous to the previous

section, finite changes in ∆µ driven by large values of ∆Wµ, Avµ can results in µ(t+∆tl) = µ(t)+∆µ

being such that |µ| > 1. It follows that
√

1 − µ2 can become imaginary, which is unphysical.
To constrain the discretized equations to be physical, we define the modified coefficientM

to be:

M(µ) =


√

1 − µ2 |µ| < µc√
1 − µ2

c exp[(µ − µc)S (µc)] |µ| ≥ µc

, (A.4)
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where S (µc) = µc/(1 − µ2
c), and µc is the critical value at which regularization occurs.

The coefficient is unaltered away from the critical poles, and regularized near them when |µ| >
µc in a manner consistent with the Einstein relation (55) and the condition that the coefficients
are Lipschitz continuity.

Substituting (A.2) and (A.4) into (51), the regularized evolution equation for ∆µ is

∆µ= 2DaMM
′∆tl+

√
2DaM∆Wµ + κM

DaMM
′
(
∆W2

µ − ∆tl
)

+

√
Dv

Da
MD′aAvµ

 , (A.5)

whereM′ = dM/dµ. In the simulations conducted here we set µc = 0.95 which, again, we find
to work empirically.
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area simulation, arXiv preprint arXiv:1202.6283 (2012).
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